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Summary 
The glycosylation of the acute phase glycoprotein oq-acid glycoprotein (AGP) in human sera 
is subject to marked changes during acute inflammation as a result of the cytokine-induced hepatic 
acute phase reaction. The changes described thus far comprise alterations in the type of branching 
of the carbohydrate structures as revealed by increased reactivity of AGP with concanavalin A. 
We now report on acute inflammation-induced increases in c~l-*3-fucosylated AGP molecules, 
as detected by the reactivity of AGP towards the fucose-binding Aleuria aurantia lectin (AAL) 
in crossed affino-immunoelectrophoresis of human sera. Laparotomy of women, for the removal 
of benign tumors of the uterus, was used as a model for the development of the hepatic acute 
phase response. Huge increases were detected in the amounts of strongly AAL-reactive fractions 
of AGP, presumably containing three or more fucosylated N-acetyllactosamine units. At least 
part of these Lewis X-type glycans (Gal~/1-~[Fucc~l-~3]GlcNAc-R) appeared to be substituted 
also with an oL2~3-1inked sialic acid residue. This was revealed by the laparotomy-induced abundant 
staining of AGP with an antisialyl Lewis X monoclonal antibody (CSLEX-1) on blots of sodium 
dodecyl sulfate-polyacrylamide gels containing AGP isolated from the sera of a patient at various 
days after operation. It is concluded that acute inflammation induces a strong increase in sialyl 
Lewis X-substituted AGP molecules that persists at a high level throughout the inflammatory 
period. We postulate that these changes represent a physiological feedback response on the interaction 
between leukocytes and inflamed endothelium, which is mediated via sialylated Lewis X structures 
and the selectin endothelial-leukocyte adhesion molecule 1. 

C haracteristic changes in the glycosylation of c~t-acid 
glycoprotein (AGP) 1 and other acute phase glycopro- 

teins occur during the acute phase of inflammation with re- 
spect to the degree of branching of the N-linked glycans on 
the molecules (1-6). Cytokines, like IL-1, II.-6, and TNF, in- 
volved in the induction of the inflammatory reaction have 
been shown to be responsible for these changes by affecting 
the glycosylation process in the liver (5, 7-10). The function 
of the changes in glycosylation is not known, although effects 
on immunomodulative properties of AGP and C~l-protease 

1 Abbreviations used in this paper: AAL, Aleuria aurantia lectin; AGP, al-  
acid glycoprotein; CAIE, crossed afl~no-immunoelectrophoresis; ELAM, 
endothelial-leukocyte adhesion molecule; PI, ~xl-protease inhibitor; PSA, 
l~'sura sativum agglutinin; SLeX, sialyl Lewis X. 

Part of this work was presented at the 8th International Congress of 
Immunology, August 23-28, 1992, Budapest, Hungary, and at the 2nd 
International Jenner Glycoimmunology Meeting, November 1-2, 1992, 
London, UK. 

inhibitor (PI) have been described (11-14). In liver cirrhosis 
and in cancer sera the occurrence has been described of AGP 
and other serum glycoproteins expressing fucosylated and 
sialylated glycans of the type sialyl Lewis X (SLeX; Neu- 
Aco~2-~3Gal~l-~4[Fucotl-*3]GlcNAc-R) (15-18), In normal 
serum, however, only a low expression of SLeX on serum 
glycoproteins has been reported (15, 17, 18). The Lewis X 
structure in its sialylated form is of special interest because 
this structure, when present on leukocytes, is the ligand for 
the cell adhesion molecules E-Selectin (the endothelial-leuko- 
cyte adhesion molecule [ELAM-1]) and P-Selectin (GMP140/ 
PADGEM/CD62), involved in the inflammation-dependent 
adhesion of neutrophils, monocytes, or resting T cells to 
vascular endothelium or platelets (19-23). E-Selectin and 
P-Selectin are normally not expressed on the cell surface of 
the cells, but can be induced rapidly upon stimulation with 
inflammatory mediators. Walz et al. (19) have described that 
AGP has an affinity for E-Selectin and that this affinity can 
be substantially increased by in vitro fucosylation of AGP 
increasing most probably the expression of SLeX on the 
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glycans. They suggested that in vivo an increased serum level 
of SLeX-expressing AGP, as found in liver cirrhosis (15, 16), 
could have a feedback inhibitory effect on the extravasation 
of leukocytes, by competition for the E-Selectin adhesion 
molecules. 

To investigate the probability of such a type of humoral 
response, we decided to study the occurrence of changes in 
the level of SLeX-substituted AGP in human plasma during 
the acute phase reaction. Laparotomy of women for the removal 
of benign tumors of the uterus was used as a model for the 
development of the hepatic acute phase response. Crossed 
affino-immunoelectrophoresis (CAIE) of AGP in patient sera 
before and after operation with fucose-specific lectins as ai~no- 
component, and staining with a mAb against SLeX (CSLEX-1) 
of electroblots of SDS-polyacrylamide gels containing iso- 
lated AGP, were used for detection. 

Materials and Methods 

Sources of Sera. Control sera were obtained from apparently 
healthy individuals. Serum samples of women, subjected to lapa- 
rotomy either for the removal of benign tumor(s) of the uterus 
or for primary Caesarean section, were taken 24 h before operation 
and at several days after operation until they were released from 
the hospital. Serum samples of previously healthy burn patients 
were taken within hours of the injury and at regular intervals within 
the following 2 mo, as detailed elsewhere (5). 

Isolation of Aleuria aurantia Lectin (AAL). Fruiting bodies of 
Aleuria aurantia were collected locally and stored frozen at -80~ 
in 200-g portions. Fruiting bodies (200 g) were homogenized in 
1.5 vol (vol/wt) 10 mM phosphate buffer (pH 7.2), 0.14 M NaC1, 
0.02% NaN3 (PBS) using a Polytron homogenizer (Kinematica 
GmbH, Kriens/Luzern, Switzerland). The lectin was extracted by 
stirring the homogenate for 4 h at 4~ followed by centrifugation 
for 30 min at 14,000 rpm (4~ 6X300 rotor, MSE 21), and was 
subsequently precipitated by ammonium sulphate (80% saturation). 
The precipitate was resuspended in 150 ml PBS, followed by dial- 
ysis against PBS for 24 h with three changes of the buffer. Residual 
insoluble materials were removed from the retentate by centrifuga- 
tion (40 rain; 40,000 rpm at 4~ 8X50 rotor, MSE 65). AAL 
was isolated from the crude preparation by affinity chromatography 
according to Debray and Montreuil (24) using an t-fucose-agarose 
column (1.8 x 12 cm; F7379; Sigma Chemical Co., St. Louis, MO) 
at a flow rate of 10 ml/h. The column was washed with PBS until 
the absorption at A2s0 a m  Of the effluent was negligible. Specific 
elution of the lectin was performed with two-column volumes of 
PBS, 0.15 M ce-t-fucose (Sigma Chemical Co.). The eluate was 
dialyzed against 10 times diluted PBS for 4 d with six changes of 
the buffer. The hemagglutination titer of AAL was determined 
using a 3 % suspension of human red blood cells in PBS in V-shaped 
microtiter plates and a twofold well-to-well dilution. The AAL 
preparation was concentrated to a titer of 512 by using hygroscopic 
powder (Aquadde II; Calbiochem-Behring Corp., La Jolla, CA) 
applied at the outside of a dialysis tube containing the preparation. 
The final preparation was stored at 4~ and remained stable for 
at least 3 mo. The purity of the final preparation was checked by 
SDS-PAGE under denaturing conditions (see below). Only one pro- 
tein band was observed with an apparent molecular mass of 30 kD 
in accordance with the report of Debray and Montreuil (24). 

Characterization of the Binding Specificity of AAL. The binding 

specificity of AAL was determined after immobilization of the iso- 
lated lectin on activated CH-Sepharose 4B (4 mg/ml) (Pharmacia 
LKB, Uppsala, Sweden). Chromatography on AAbSepharose 4B 
was performed using a 1.3-ml column (0.3 x 18 cm; 4 ml/h; 0.2- 
ml fractions; 20~ and PBS, 0.02% NaN3 as starting buffer. Ra- 
dioactively labeled standard glycopeptides or oligosaccharides were 
applied in 0.1 ml of starting buffer. Nonbound and weakly retarded 
compounds were eluted with five-column volumes of starting buffer. 
Retarded or bound glycans were eluted with 10 mM t-fucose in 
starting buffer. The radioactivity in each fraction was determined 
by liquid scintillation. The AAbSepharose column was regener- 
ated with 10-column volumes of starting buffer. 

All standard structures used were characterized previously by 
1H-NMR or capillary gas chromatography/mass fragmentography. 
[2-3H]Man-laheled (Man)s-GlcNAcOH [Mancd-~2Manal---~ 
2Manc~l~3(Manal-~3 [Manal-~2Manc~l-~6]Mancel~6)- 
Man~I---~4GIcNAcOH1 was a kind gift from Dr. R. Geyer (Bio- 
chemisches Institut am Klinikum der Universit~t Giessen, 
Giessen, Germany) (25). Asialo complex type biantennary gly- 
copeptide GP2 (Galfll--*.4GlcNAc-~l---~2Mano~l-~3[GalBl-~4Glc- 
N/~I~2Manc~I--~6]-Man~I-~GlcNA~I~4GlcNAc-BI~Asn- 
Lys), asialo complex type triantennary glycopeptide GP3 (Gal/~l~ 
4GlcNAcB1--~4[Gal~l---~4GlcNAcfll--~2]Mano~l-~-3 [Gal/~l--~4Glc- 
NAc-/31~2Man~l-~6]Man/~1-~4GlcNAcB1--~4GlcNAcB1~Asn- 
Lys), asialo complex type tetraantennary glycopeptide GP4 [Galfll-~ 
4GlcNAr.B1--4(Galfll-~4GIcNAr.BI~2)Manc~I--~3(GalBI-~4Glc- 
NAcB1---6[GalBl~4GlcNAcB1--~2]Mane~l-~6)ManBl-~4Glc- 
NAcBl-*-4GlcNAc~l---~peptide], and GP4-MF (a mixture of GP4 
with t-fucose cd~3 linked to a GlcNAc residue of one of the 
Gal~I---~4GlcNAc branches [Lewis X-type structure]) were origi- 
nally prepared from human AGP and labeled with [l~C]acetate in 
the peptide part as described previously (26). GP4-MF1, GP4-MF2, 
and GP4-MF3 were prepared from GP4-MF as described previ- 
ously (26), and represent Lewis X-type glycopeptides fucosylated 
at the/~l--~4Manal~3-, the B1--*-6Mancd-~6-, and the 31~ 
2Manc~l-*-6-1inked Galfll~4GlcNAc branches, respectively. Core- 
fucosylated complex-type monoantennary glycopeptide MS, Neu- 
Acc~2--~6Gal~l~4GlcNAcBl-~2-Manod -~3 (Manal---~6)Man~l--~ 
4GlcNAcB1--*-4(Fuc-c~l-~-6)GlcNAc~l-~[14C-Ac]peptide was a 
kind gift from Dr. D. H. van den Eijnden (Department of Medical 
Chemistry, Vrije Universiteit, Amsterdam, The Netherlands). 

CAIE. CAIE with Con A or Pisum sativum agglutinin (PSA) 
as a~no-component in the first-dimension gel was performed ac- 
cording to Bog-Hansen (27), as previously described (5), using 
2 mg Con A (Type V; Sigma Chemical Co.) or 5 mg PSA (crude 
preparation; EY Labs, San Mateo, CA)/ml gel. The first- 
dimension gel for CAIE with AAL was prepared from a mixture 
of 300 #1 AAL preparation (hemagglutination titer 512), 75/ll five 
times concentrated dectrophoresis buffer, and 625 /ll 1.6% 
agarose (Standard Low mr Agarose; Bio-Rad Laboratories, Rich- 
mond, CA)/ml. 0.5-2 #1 serum was applied to the gel and dec- 
trophoresis was performed at 10 V/cm for 90 min at 15~ Ciba- 
cron blue bound to BSA was included in the sample as an internal 
standard of the electrophoretic mobility. The second-dimension 
gel containing monospecific rabbit anti-human AGP IgG or anti- 
PI IgG (1:300; vol/vol) (Dakopatts, Copenhagen, Denmark) was 
separated from the first-dimension gel by a 1-cm-wide inter- 
mediate gel containing 0.1 M methyl-ct-D-glucopyranoside (Sigma 
Chemical Co.) without (in the case of Con A) or with 0.01 M 
a-t-fucose in (in the case of AAL) to decompose the complexes 
with the lectin. Electrophoresis in this dimension was carried out 
for 18 h at 2 V/cm and 15~ Gels were stained with coomassie 
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brilliant blue R 250 (5). The area of each AGP or PI form under 
the precipitation line was measured using planimetry and the reac- 
tivity coefficient (RC) was calculated for each pattern. The RC 
was defined as the ratio between the sum of the areas of lectin- 
reactive forms and the area of the nonreactive form. The total 
amounts of AGP and PI as present in the various samples were 
determined by circular immunodiffusion (28). 

Partial Purification of AGP from Serum. Isolation of AGP from 
serum was performed by immunoaffinity chromatography over an 
anti-AGP-Sepharose 4B column (prepared from CH-Sepharose 4B 
[Pharmacia-LKB] and rabbit anti-human AGP IgG according to 
the instructions of the supplier). 0.5 ml of serum was applied to 
the anti-AGP-Sepharose 4B column (2.4 x 0.8 cm; 5 ml/h). The 
Sepharose column was subsequently washed with PBS until the 
absorption at A2s0 ,m of the effluent was negligible. Specific elu- 
tion of the bound AGP was performed with 0.05 M diethylamine 
(pH 11.5), 0.15 M NaC1, 0.02% NaN3 under immediate neutral- 
ization of the eluted fractions. AGP-containing fractions (as de- 
tected by rocket immunodectrophoresis) were pooled, dialyzed 
extensively against 0.1 M ammonium bicarbonate (pH 8.0), 
lyophilized, and stored at -20~ The amount of AGP in each 
preparation was determined by radial immunodiffusion (28). 

Isolation of Various Con A- or AAL-reactive Fractions of AGP. Var- 
ious lectin-reactive fractions of sera were obtained by preparative 
CAIE, as detailed elsewhere (29). In short, the method involved 
the electrophoretic separation of the various lectin-reactive AGP 
forms in a Con A- or AAL-containing agarose gel in which 75 
#I of serum was applied in various holes. Gel lanes containing the 
nonretarded and the lectin-retarded forms were cut out perpendic- 
ular to the electrophoresis direction, after determination of the po- 
sitions of the various forms in small control lanes by immunoelec- 
trophoresis in the second dimension using rabbit anti-human AGP 
IgG. The glycoprotein forms were recovered from the lectin- 
containing gels by electrophoresis into a second-dimension agarose 
gel without additions. A small intermediate gel containing the ap- 
propriate sugar(s) was used to dissociate lectin-glycoprotein com- 
plexes. The various lectin-reactive forms of AGP were collected from 
the second-dimension gels by electroelution (422 Electro-Eluter; 
Bio-Rad Laboratories). 

SDS-PAGEBlottin~andlmmunoassayofAGP. 10% SDS-PAGE 
was performed according to Laemmli (30) using the Mini-Protean 
II dual slab gel apparatus (Bio-Rad Laboratories). Gels were loaded 
with equal amounts of AGP as present in patient sera or in par- 
tially purified preparations of AGP from the sera of one of the pa- 
tients. AGP isolated from pooled normal human serum (4) was 
used as a standard. Protein bands were detected by staining of the 
gels with coomassie brilliant blue R250. Proteins were blotted onto 
nitrocellulose by electrophoretic transfer using the Mini Trans-Blot 
Cell (Bio-Rad Laboratories). AGP was detected on the blots using 
rabbit anti-human AGP IgG and peroxidase-conjugated goat 
anti-rabbit IgG (Nordic Immunology, London, UK). SLeX deter- 
minants on AGP were detected by incubating AGP-containing 
nitrocellulose strips with mouse monoclonal anti-SLeX IgM 
(CSLEX-1, 20 #g/ml in 10 times diluted PBS; Tissue Typing Lab- 
oratory, Department of Surgery, UCLA School of Medicine, Los 
Angeles, CA) (31), followed by alkaline phosphastase--conjugated 
goat anti-mouse IgM (1:250; vol/vol; Zymed Laboratories, San Fran- 
cisco, CA) for detection. The specificity of the binding of the 
CSLEX-1 antibody was checked by desialylation of AGP prepara- 
tions with neuraminidase (Vibrio cholerae; Boehringer, Mannheim, 
Germany) (0.1 U/ml, 2 h, 37~ before SDS-PAGE. 

Results 

Control of the Specificity of Binding of AAL.  The AAL 
preparations exhibited the same binding characteristics for 
cd--~3- and c~l~6-linked complex type glycans as reported 
by Debray and Montreuil (24) when the lectin was immobi- 
lized on CH-Sepharose 4B (AKbSepharose; Table 1). N-linked 
complex-type glycopeptides substituted with an cd--~-3-1inked 
Fuc residue (the GP4MF isomers) were retarded by 0.5 
(GP4MF3) to one-column volume of PBS (GP4MF-1 and 
-2). The Puccd--~6-substituted glycopeptide MS was strongly 
retarded on the AAbSepharose column since it was eluted 
with 5-10-column volumes of PBS or (specifically) with one- 
column volume of PBS containing 0.05 M L-Fuc. Non- 
fucosylated bi-, tri-, and tetraantennary complex-type glycans 
as well as the oligomannose saccharide (Man)sGlcNAcOH 
were neither bound nor retarded. 

Reactivity of AGP in Control Human Sera with the Fucose- 
specific Lectins A A L  andPSA. AGP present in pooled normal 
human sera was fractionated in a nonreactive and four reac- 
tive fractions upon CAIE with AAL as affino-component (Fig. 
1). All fractions were recovered on the same positions upon 
reanalysis by CAIE with AAL, after fractionation of serum 
in different AAL-reactive fractions by preparative CAIE (not 
shown). Analyses of 16 different sera of apparently healthy 
volunteers revealed that 40 __+ 13% of AGP did not interact 
at all with AAL (AO), and 14 _ 2% (A1), 16 __. 3% (A2), 
13 ___ 5% (A3), and 17 ___ 8% (A4) of AGP were retarded 
by AAL to different extents. No retardation was detectable 
for AGP when sera were subjected to CAIE with the Fuccd--~ 
6-specific lectin PSA as affino component (not shown). 

Acute Phase-induced Increases in the Reactivity of AGP with 
AAL.  Laparotomy of women for the removal of benign 
tumors of the uterus was used as a model of the acute phase 
response in serum. The development of the acute phase reac- 
tion after laparotomy is illustrated by the changes in the total 
amount and in the Con A reactivity of AGP (Fig. 2 and Table 
2). All three patients displayed a strong increase in the AAL 
reactivity of AGP after the onset of acute inflammation. The 
increase in AAL reactivity especially regarded forms A3 and 
A4 of AGP, as is illustrated in Fig. 2. The highest increases 
in AAL reactivity were noted at the end of the period studied. 
The changes in reactivity with Con A and AAL occurred 
independently from each other and from the changes in the 
total amount of AGE 

Like in control sera (see above), no retardation of AGP was 
detectable in the sera of the various patients when analyzed 
by CAIE with the Fucotl--~6-specific lectin PSA. This indi- 
cates that the increased AAL reactivity of AGP did not con- 
cern the de novo expression of cd--6-1inked Fuc residues, 
at least with regard to biantennary glycans (32, 33). Since, 
in addition, the common type of fucosylation of AGP is in 
an oil--#3 linkage (4, 33, 34), the observed change in AAL 
reactivity was most likely evoked by an increased substitu- 
tion of the glycans with otl"~3-linked Fuc residues. PSA did 
react with PI revealing the presence of od'-~6-1inked Fuc 
residues. However, no acute phase-induced changes could be 
detected in the reactivity of this Fucotl--~6-substituted acute 
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Table 1. Characterization of Carbohydrate Binding Specificity of AAL-Sepharose 

Glycopeptide or Schematic 
oligosaccharide structure Elution behavior 

GP2 6 Not retarded 
3 

MS 8 
3 - ~ -  Eluted with 0.05 M ~-L-Fuc in PBS 

GP3 6 Not retarded 
3 

4 J 

GP4 6 Not retarded 
3 

4 ~ 

GP4MF1 

GP4MF2 

GP4MF3 

6 

3 

* f  

6 
6 

3 

. t  

6 

3 

4 
i 

Retarded by one-column volume PBS 

Retarded by one-column volume PBS 

Retarded by 0.5-column volume PBS 

6 

(Man)sGlcNAcOH ,3x6_ Not retarded 
3 

Not retarded glycans were eluted in the void volume with the washing buffer PBS. The structures are depicted in a schematic form, with numbers 
indicating the positions of substitution at the branching points. See Materials and Methods for the definition of the standard structures and for details 
of the chromatographic procedure used. 
" Fucose residues. 

phase glycoprotein with either PSA or AAL in the patient 
sera (not shown). 

Acute Phase-induced Increase in the Expression of SLeX An- 
tigens on AGP. To establish whether the acute phase-induced 
change in AAL reactivity of AGP involved an increased oc- 
currence of fucosylated and sialylated N-acetyllactosamine units 
of the type NeuAcc~2-~3Ga131-~4(Fuco~l-~3)GlcNAc-R 
(SLeX), the expression of this type of antigen on AGP was 
studied during the development of the acute phase using anti- 
SLeX monodonal IgM. The presence of SLeX antigens on 
AGP could not be unequivocally established on nitrocellu- 

lose blots of SDS-PAGE gels of total sera, because of both 
comigrating other serum glycoproteins and the low sensi- 
tivity of the method. It was decided, therefore, to perform 
the analyses on immunoaffinity-purified AGE For obvious 
reasons this effort was performed only for one set of sera (pa- 
tient I of Table 2). SDS-PAGE of equal amounts of purified 
AGP fractions revealed broad protein bands at 43 kD (4) that 
comigrated with standard AGP and reacted with anti-human 
AGP antibodies (Fig. 3 A). A weak positive staining with 
anti-SLeX was observed for AGP isolated from serum before 
operation (Fig. 3 B). Strongly enhanced staining was observed 
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Figure 1. Reactivity of AGP in control human serum with AAL. The 
reactivity of AGP with AAL was determined by CAIE as described in 
Materials and Methods using 1 /zl of pooled human sera and rabbit 
anti-human AGP IgG for detection. Only the second-dimension gel is 
shown; the application site in the first-dimension gel coincides with the 
right hand side of the figure. (.40) AGP fraction nonreactive with AAL; 
(A1-A4) reactive fractions with AAL in increasing order of reactivity. 

at 2 and 4 d after operation (note that the same amount of  
AGP was applied in each lane [Fig. 3 A]). The binding of  
CSLEX-1 was neuraminidase sensitive (not shown). These 
findings strongly suggest that the fraction of  AGP and/or 
the number of  glycans per AGP molecule expressing SLeX 
determinant(s) were elevated after the onset of  the inflam- 
mation. 

Increase in AAL Reactivity of AGP in Other Models of Acute 
Inflammation. To study the ubiquity of  the acute phase-in- 
duced change in AAL reactivity of  AGP, serum samples of 
two other groups of  patients, women subjected to laparotomy 
for primary Caesarean section and patients suffering from se- 
vere burns (Table 3 and Fig. 4), were analyzed by CAIE. In 
all patients an increase in AAL reactivity of AGP became clearly 
manifest to the end of  the period studied. 

Effect of Biantennary Glycan Content on the AAL Reactivity 
of AGP. During the acute phase the fraction of  AGP con- 

Figure 2. Reactivity of AGP with Con A (a-d) and AAL (e-h) before 
and at various days after laparotomy. Sera were obtained 1 d before (a and 
e), and 1 (b andJ), 2 (c and g), and 4 d (d and h) after laparotomy for 
the removal of a benign tumor of the uterus from an otherwise healthy 
women (patient 1 in Table 2). The reactivity with Con A or AAL was 
determined by CAIE as described in Materials and Methods using 1/A 
of serum, and rabbit anti-human AGP IgG for detection. Only the second- 
dimension gels are shown; the application site in the first-dimension gel 
coincides with the fight hand side of each figure. (AO and CO) AGP trac- 
tion nonreactive with AAL, respectively, Con A; (A1-A4 and CI-C3) 
AGP tractions reactive with AAL, respectively, Con A in increasing order 
of reactivity. 

Table 2. Effect of Latmrotomy-induced Acute Inflammation on the Reactivity of AGP with AAL and Con A 

Patient 1 Patient 2 Patient 3 

RC RC RC 

Day AGP Con A AAL AGP Con A AAL AGP Con A AAL 

mg~l ~ 1  mg~l 
- 1  1.6 1.9 2.1 1.4 1.4 0.7 2.1 1.1 1.6 

+1 1.8 3.0 2.5 1.4 1.8 0.9 2.0 2.0 4.1 
+2 1.9 2.9 3.7 . . . . . .  

+4 2.1 2.2 4.5 2.4 2.0 1.8 - - - 

+5 . . . . . .  1.7 1.4 6.5 

The sera of women subjected to laparotomy for the removal of benign tumors of the uterus were analyzed before and at various days after operation 
for acute phase-induced changes in concentration (Mancini) and in lectin reactivity of AGP (CAIE). RC (reactivity coefficient), ratio of the sum 
of the lectin-retarded fractions over the nonretarded fraction of AGP. See Materials and Methods for details. 
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Figure 3. Inflammation-induced increase in the expression of SLeX an- 
tigens on AGP. Immunoaflinity-purified preparations of AGP from the 
four sera of the laparotomy patient 1 (compare Fig. 2 and Table 2) were 
subjected to SDS-PAGE, followed by blotting and detection of AGP (a) 
or SLeX (b) with specific (monoclonal) antibodies. Only the part of the 
blots containing the AGP bands is reproduced. Care was taken that the 
same amount of AGP (8/xg) was applied in each lane of the various gels, 
as is demonstrated by the specific detection of AGP in a. (Lane 1) 1 d 
before operation; (lanes 2, 3, and 4), respectively, 1, 2, and 4 d after lapa- 
rotomy. (Lane 0 in b) AGP isolated from pooled human serum. See Materials 
and Methods for further details. 

taining one or more biantennary glycans increased, as indi- 
cated by the reactivity with Con A (Table 2). To investigate 
the relationship with the increase in AAL reactivity, frac- 
tions of  AGP reacting differently with Con A were prepared 
from acute phase sera and subjected to CAIE with AAL as 
affino-component. Fractions expressing only tri- or tetra- 
antennary glycans (AGP-C0), or in which one (AGP-C1) or 
two of these glycans are replaced by biantennary glycans (AGP- 
C2) (4), were obtained from sera of  a burn patient (patient 

Table 3. Effect of Acute and Chronic Inflammation on the 
Reactivity of AGP with AAL 

Figure 4. AAL reactivity of AGP at various days after injury by burning. 
Sera were obtained at the first day (a), and 3 (b) and 30 d (c) after the 
injury by burning (burn patient 1 in Table 3). 2.5 (a) or 1/xl of serum 
(b and c) was analyzed by CAIE for the reactivity of AGP with AAL. 
See Fig. 2 for further explanation and Materials and Methods for details. 

Patient 1 Patient 2 Patient 3 

Day after RC RC RC 
Source injury or 
of sera operation AGP AAL AGP AAL AGP AAL 

mg/ml mg/ml mg/ml 
Burns* 1 0.8 2.7 0.8 3.0 1.8 2.3 

3 2.1 3.4 . . . .  
4 - - 1.9 3.0 2.1 3.1 

16 - - 7.3 3.7 - - 

19 . . . .  4.6 4.4 

30 4.5 5.1 . . . .  

PS - 1 1.3 1.0 1.0 0.2 

+1 1.3 1.1 1.0 0.3 
+7 2.0 2.6 1.7 1.9 

Acute-phase induced changes in concentration (Mancini) and in AAL reac- 
tivity of AGP (CAIE) were analyzed in sera of patients suffering from 
severe burns (Burns) or patients subjected to laparotomy for primary 
Caesarean section (PS) at various days during hospitalization. KC (reac- 
tivity coet~cient), ratio of the sum of the lectin-retarded fractions over 
the non-retarded fraction of AGP. See Materials and Methods for details. 
* Part of the values for the concentration of AGP in the sera of burn 
patients were published earlier (5). 

1 in Table 3) via fractionation of the sera by preparative CAIE 
with Con A as affino-component. The AAL reactivity of  
all three AGP fractions appeared to increase from day 1 to 
30, like in the unfractionated sera: the RC values for AGP- 
CO, -C1, and -C2, respectively, were 1.7, 2.1, and 2.2 on 
the first day, and 5.0, 5.4, and 5.0 on the 30th day after the 
injury by burning (compare with Table 3, patient 1). 

Discussion 

In this study we have utilized the fucose-specific lectin AAL 
and a mouse mAb to investigate the inflammation-induced 
expression of sialylated Lewis X structures, NeuAcc~2--~3GalB1 
--~4(Fucotl--~3)GlcNAc-R, on the acute phase glycoprotein 

HEPATOCYTE ~ synthesis/secretion of 
(~,,f SLeX-substituted AGP 

CYTOKINES 

(~)X~k Expression of 
E-Selectin on 
endothelial cells 

adhesion . >  SLeX-expressing 
leukocytes 

Figure 5. Simplified model of cytokine-induced feedback inhibition of 
E-Selectin-mediated cell adhesion during inflammation. 
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AGP in human sera. The absolute amount of fucosylated AGP 
molecules as well as the number of Fuc residues per molecule 
were enhanced under the various acute inflammatory condi- 
tions studied (Tables 2 and 3). The amount of AGP mole- 
cules expressing three or more Fuc residues was especially 
increased. This is concluded from the huge increases in the 
strongly retarded fractions A3 and A4 (see Figs. 2 and 4), 
under the assumption that the number of Fuc residues per 
fraction is the sole determinant for the extent of retardation 
by AAL (see references 27 and 35 for theoretical background 
of the method). The laparotomy-induced abundant staining 
of AGP with a SLeX-specific mAb (Fig. 3) demonstrates that 
a significant part of the fucosylated N-acetyllactosamine units 
of the gtycans were substituted also with an ot2-~3-linked 
sialic acid residue. So, acute inflammation appears to induce 
a strong increase in the SLeX-substituted glycans per AGP 
molecule, which persists at a high level throughout the whole 
period studied. Increases in SLeX-bearing glycans on acute 
phase glycoproteins have thus far only been reported in chronic 
inflammation and in sera from patients with cancer (15-17). 

Fucosylated glycans recognized by AAL might express 
c~1-~3-, ot1~6-, and/or cd-~2-1inked glycans. The reactivi- 
ties of the AGP molecules with AAL, however, only reflect 
the interaction with Fuc residues in an cd-~3 linkage to type 
II N-acetyUactosamine units (Lewis X) of the asparagine-linked 
glycans for the following arguments. (a) Fuc residues on AGP 
molecules isolated from normal human sera have been shown 
to occur only in an ot1~3 linkage to the GlcNAc residue 
of one of the N-acetyllactosamine branches of the glycans 
(4, 34, 36, 37). (b) The N-acetyUactosamine units of AGP 
are of the type II (Gal/31"-*4GlcNAc) under normal (4, 34, 
36, 37), inflamed (16), and tumorigenic conditions (33). (c) 
No interaction could be established between AGP and PSA, 
a lectin specific for Fucotl~6-substituted biantennary glycans 
(see Results). This type of glycan was only reported to be 
expressed on AGP isolated from human metastatic livers (33). 
PSA did react with PI, another acute phase glycoprotein syn- 
thesized by the liver, being indicative for the presence ofo~l~6- 
linked Fuc residues on PI. This type of linkage most prob- 
ably was responsible also for the reactivity of PI with AAL, 
since during acute inflammation no changes were found in 
the reactivity of PI with either PSA or AAL. This further 
suggests that the hepatic biosynthesis of od~6-1inked Fuc 
residues was not affected by the inflammatory conditions. (d) 
The lack of change in AAL reactivity of PI also makes it 
very unlikely that c~l~2-1inked Fuc residues were introduced 
on serum glycoproteins during the hepatic acute phase reac- 
tion. Such a type of abnormal fucosylation has only been sug- 
gested to occur during liver diseases on PI and other acute 
phase glycoproteins (38, 39). 

According to literature, 30-50% of the bi-, tri-, and tetraan- 
tennary N-linked glycans of normal AGP contain one Fuc 
residue (34, 36, 37), and a minor part of the tetraantennary 
glycans contains two Fuc residues (36). At least part of the 
fucosylated glycans were not fully substituted with o~2"~3- 
or c~2-~6-1inked sialic acid residues (37), resulting in a low 
expression of SLeX on normal AGP (15). Since five glycans 

are present on each AGP molecule, it should be expected that 
all molecules would contain at least one fucosylated glycan. 
In this study, however, ,040% of the AGP molecules present 
in normal human sera apparently were not fucosylated at all, 
since they did not react with AAL in CAIE. This indicates 
that in normal AGP the fucosylated structures are not dis- 
tributed at random over the various molecules. 

In previous studies it was established that at least three 
molecular forms of AGP occur in normal sera that differ in 
the degree of branching of the glycans, and that can be 
distinguished by their reactivities with Con A (4, 6). Con 
A-reactive AGP, containing one or two biantennary glycans, 
is increased during acute inflammation (1-7). Our present 
experiments exclude that a direct relationship exists between 
the inflammation-induced increases in biantennary glycan con- 
tent and the extent of fucosylation of AGP. First, the changes 
in Con A and AAL reactivity differ both in magnitude and 
in time. For example, the AAL reactivity in burn sera in- 
creased steadily over a period of 30 d (Fig. 4), whereas the 
Con A reactivity reached maximal values in the first 16 d 
after injury and rapidly returned to control values thereafter 
(5). Second, the AAL reactivities of isolated Con A-reactive 
and nonreactive fractions of AGP were found to be comparable 
throughout the inflammation period studied, and were shown 
to increase to the same extent (see Results). So, it can be con- 
eluded that the change in fucosylation and in the type of 
branching of AGP are differently regulated. 

We and others have supported evidence that changes in 
glycosylation of acute phase glycoproteins result from cytokine- 
induced variations in their biosynthesis in the liver (5-7, 10). 
It can be supposed, therefore, that the liver is also involved 
in the changes in glycosylation described in this study. The 
synthesis of SLeX-bearing glycans is inducible in the liver, 
since the occurrence has been described during liver cirrhosis, 
both on membrane-bound glycoproteins and on secreted AGP 
(15, 16, 40). Furthermore, the liver otl--~3-fucosyltransferase 
is a likely candidate for the regulation of the enhancement 
of fucosylation, since the enzyme can transfer Fuc residues 
to c~2-~3-sialylated N-acetyllactosamine units of the glycans 
(41). Fucosylation of c~2~6-sialylated N-acetyllactosamine 
units is prohibited by the structural requirements of the en- 
zyme (41). However, it can be speculated that the acute 
phase-induced secretion of the o~2-'~6-sialyltransferase (42-44) 
will lead to a decreased substitution of the glycans of AGP 
with o~2~6-1inked sialic acid, and consequently, will allow 
both the resident o~2-~3-sialyltransferase and the otl-~3- 
fucosyltransferase to introduce a SLeX type of structure on 
the corresponding N-acetyllactosamine units of the glycans. 
Such a type of regulation for the expression of SLeX has been 
suggested to occur in human myeloid ceils during matura- 
tion (45). An acute phase-induced change in the substitu- 
tion of AGP with ot2--*3-1inked sialic acid residues is sug- 
gested from our results. A decrease, or at least a stabilization, 
in the expression of the ot2--~3-sialylated LeX structures on 
AGP is suggested from Fig. 3 at the fourth day of the 
laparotomy-induced inflammatory reaction, whereas the de- 
gree of fucosylation of AGP on the fourth day was higher 
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than on the second day (Table 2). Studies are in progress to 
further substantiate these differences. 

The inflammation-induced increase in SLeX-substituted 
glycans on AGP might represent a humoral mechanism 
provided by the liver for feedback inhibition of granulocyte 
extravasation into inflamed tissues (Fig. 5). Such a mecha- 
nism was proposed by Walz et al. (19) recently. They reported 
that increased fucosylation of AGP, by means of treatment 
with al~3-fucosyltransferase, substantially increased its 
affinity for ELAM-1 or E-Selectin. E-Selectin mediates the 
primary interaction of inflamed endothelial cells with, e.g., 
granulocytes and memory T cells expressing the SLeX- 
containing glycans (19-23). Cytokines are involved in the ex- 
pression of the E-Selectin on the endothelial cells, and, as 
is discussed above, are likely to be involved in the induction 
of the SLeX expression on AGP (Fig. 5). The possibility that 
an increase in the plasma level of SI.eX-bearing AGP mole- 
cules will competitively inhibit the primary interaction of 
leukocytes with E-Selectin is in accordance with our finding 
that the changes in fucosylation reach a maximum to the 
end of the acute phase periods studied. The proposed inhibi- 
tory function of SLeX-expressing AGP can be extended to 
the cellular adhesion process mediated by P-Selectin (GMP140/ 
PADGEM/CD62). SLeX-expressing molecules have also been 
reported to be ligands for this adhesion molecule, which 

mediates the adhesion between leukocytes and inflammation- 
induced endothelial cells or platelets (20, 21). SLeX-substituted 
AGP molecules, furthermore, are good candidates to serve 
as soluble binding proteins for Selectin molecules that have 
been shed from endothelial cells. It could be speculated that 
inflammation induces an expression of SLeX on a variety of 
acute phase glycoproteins, because acute phase-induced changes 
in glycosylation (Con A reactivity) are known to occur for 
all these molecules (2, 5, 7, 12). Our results, however, do 
not support a general phenomenon because no significant 
inflammation-induced changes in the AAL reactivity were 
detected for the acute phase glycoprotein PI. In future studies 
the above-mentioned hypotheses will be tested in in vitro 
cell adhesion assays using purified AGP isolated from patient 
sera before and after induction of the acute phase reaction. 

The degree of sialylation and/or type of branching of the 
glycans of AGP have been reported to affect immunomodula- 
tory properties of AGE like lymphocyte proliferation (11, 14), 
the induction of IL-l-inhibiting activity in macrophages (13), 
and also the aggregation of platelets (46). The presence of 
fucose or of SLeX-substituted glycans has not been consid- 
ered in these studies. To further understand the role(s) of AGP 
in the acute phase response, it seems necessary to reinvestigate 
the immunomodulatory properties of AGP as a function of 
the degree of substitution with SLeX. 
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